

 KARNATAK UNIVERSITY, DHARWAD 04 - Year B.Sc. (Hons.) Program ***

 SYLLABUS

 SYLLABUS
 Subject: Mathematics
 [Effective from 2021-22]

DISCIPLINE SPECIFIC CORE COURSE (DSCC) FOR SEM I \& II, OPEN ELECTIVE COURSE (OEC) FOR SEM I \& II and SKILL ENHANCEMENT COURSE (SEC) FOR SEM I

AS PER NEP - 2020

Karnatak University, Dharwad

Four Years Under Graduate Program in Mathematics for B.Sc. (Hons.)
Effective from 2021-22

Sem	Type of Course	Theory/ Practical	Instruction hour per week	Total hours of Syllabus / Sem	Duration of Exam	Formative Assessme nt Marks	Summat ive Assess ment Marks	Total Marks	Credits
I	DSCC 1	Theory	04 hrs	56	02 hrs	40	60	100	04
		Practical	04 hrs	52	03 hrs	25	25	50	02
	OEC-1	Theory	03 hrs	42	02 hrs	40	60	100	03
	*SEC-1	Practical	03 hrs	30	02 hrs	25	25	50	02
II	DSCC2	Theory	04 hrs	56	02 hrs	40	60	100	04
		Practical	04 hrs	52	03 hrs	25	25	50	02
	OEC-2	Theory	03 hrs	42	02 hrs	40	60	100	03
	Details of the other Semesters will be given later								

* Student can opt digital fluency as SEC or the SEC of his/ her any one DSCC selected

Name of Course (Subject): Mathematics

Programme Specific Outcome (PSO):
On completion of the 03/ 04 years Degree in Mathematics students will be able to:
PSO 1 : Culminate in-depth knowledge of Algebra, Calculus, Geometry, differential equations and several other branches of mathematics and also in other allied subjects.
PSO 2 : To communicate various mathematical concepts effectively using examples and their geometrical visualization which can be used for modeling and solving of real life problems.
PSO 3 : Acquire ability of critical thinking and logical reasoning and capability of recognizing and distinguishing the various aspects of real life problems.
PSO 4 : Develop an ability to analyze the problems, identify and define appropriate computing requirements for its solutions.
PSO 5 : Develop the capability of inquiring about appropriate questions relating to the Mathematical concepts in different areas of Mathematics.
PSO 6 : Use appropriate softwares to solve system of algebraic equation and differential equations.
PSO 7 : Develop an ability of working independently and to make an in-depth study of various notions of M athematics.
PSO 8 : Develop an ability to identify unethical behavior such as fabrication, falsification or misinterpretation of data and adopting objectives, unbiased and truthful actions in all aspects of life in general and Mathematical studies in particular.
PSO 9 : Think independently and develop algorithms and computational skills for solving real word problems.
PSO 10 : Peruse advanced studies and research in M athematical sciences.

B.Sc. Semester - I

Subject: Mathematics
Discipline Specific Course (DSC)

The course Mathematics in I semester has two papers (Theory Paper -I for 04 credits \& Practical Paper -II for $\mathbf{2}$ credits) for $\mathbf{0 6}$ credits: Both the papers are compulsory. Details of the courses are as under.

Course No.-1 (Theory)

Course No.	Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative Assessmen tMarks	Total Marks
Course- $\mathbf{0 1}$	DSCC	Theory	04	04	56 hrs	2 hrs	40	60	100

Course No. 1 (Theory): Title of the Course (Theory): Algebra - I and Calculus - I

Course Outcome (CO):

After completion of course (Theory), students will be able to:
CO 1: Learn to solve the system of homogeneous and non homogeneous linear equations in m variables by using concept of rank of matrix, finding eigenvalues and eigenvectors.

CO 2: Sketch curves in Cartesian, polar and pedal equations.
CO 3: Learn geometrical representation and problem solving on MVT and Rolls theorems.
CO 4: Get familiar with the techniques of integration and differentiation of function with real variables.
CO 5: Identify and apply the intermediate value theorems and L'Hospital rule and Trace the curves.

Syllabus- Course 1(Theory): Title- Algebra - I and Calculus - I	Total Hrs: 56
Unit-I	$\mathbf{1 4}$ hrs
Matrices: Elementary row and column transformations, Row reduction to Echelon form. Rank of a matrix; Reduction to normal form; Solution of system of linear equations by Gauss Elimination and Gauss-Jordan methods. Condition for existence of non-trivial solutions of homogeneous system of linear equations. Solution of non- homogeneous system of linear equations. Eigenvalues and Eigenvectors of square matrices, real symmetric matrices and their properties, reduction of such matrices to diagonal form, Cayley-Hamilton theorem (without proof), inverse of matrices by	
Cayley-Hamilton theorem.	
Unit-II	$\mathbf{1 4 ~ h r s ~}$
Differentiation in polar Co-ordinates: Polar coordinates, angle between the radius vector and tangent. Angle of intersection of curves (polar forms), Length of perpendicular from pole to the tangent, pedal equations. Derivative of an arc length in	
Cartesian, parametric and polar forms, curvature of plane curve-radius of curvature formula in Cartesian, parametric and polar and pedal forms. - center of curvature, Asymptotes, Evolutes and envelops of plane curves.	

| Unit-III | $\mathbf{1 4} \mathbf{~ h r s}$ |
| :--- | :---: | :---: |
| Differential Calculus: Limits and Continuity, $\varepsilon-\delta$ from definition only.
 Differentiability: Definition and Problems, Properties of continuous functions, | |
| Intermediate value theorem, Rolles Theorem, Lagranges Mean Value Theorem,
 Cauchy's Mean Value Theorem. Taylor's theorem (without proof), Taylor's series,
 Maclaurin's expansions, Indeterminate forms: Evaluation of Limits using L-Hospital
 rule. | |
| Unit-IV | $\mathbf{1 4 ~ h r s ~}$ |
| Successive Differentiation: nth Derivatives of Standard functions $e^{a x+b},(a x+b)^{n}$,
 $\log (a x+b), \sin (a x+b), \cos (a x+b), e^{a x} \sin (b x+c), e^{a x} \cos (b x+c)$, Leibnitz theorem and
 its applications. Tracing of Curves (standard curves). | |

Books recommended.

1. University Algebra - N.S. Gopala Krishnan, New Age International (P) Limited
2. Theory of Matrices - B S Vatsa, New Age International Publishers.
3. Matrices - A R Vasista, Krishna Prakashana Mandir.
4. Elements of Real Analysis - Shanti Narayan, S. Chand \& Company, New Delhi.
5. Differential Calculus - Shanti Narayan, S. Chand \& Company, New Delhi.
6. Calculus - Lipman Bers, Holt, Rinehart \& Winston.
7. Calculus - S Narayanan \& T. K. Manicavachogam Pillay, S. Viswanathan Pvt. Ltd., vol. I \& II.
8. Schaum's Outline of Calculus - Frank Ayres and Elliott Mendelson, 5th ed. USA: Mc. Graw.

B.Sc. Semester - I

Subject: Mathematics Discipline Specific Course (DSC)

Course No.-1 (Practical)

Course No.	Type of Course	Theory/ Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative Assessmen tMarks	Total Marks
Course- $\mathbf{0 1}$	DSCC	Practic al	02	04	52 hrs	3 hrs	25	25	50

Course No. 1 (Practical): Title of the Course (Practical): Practicals on Algebra - I and Calculus - I Course Outcome (CO):

After completion of course (Practical), students will be able to:
CO 1: Learn Free and Open Source Software (FOSS) tools for computer programming
CO 2: Solve problem on algebra and calculus using FOSS softwares.
CO 3: Acquire knowledge of applications of algebra and calculus through FOSS.

List of the Experiments for 52 hrs / Semesters

Introduction to the software and commands related to the topic.

1. Computation of addition and subtraction of matrices.
2. Computation of Multiplication of matrices.
3. Computation of Trace and Transpose of Matrix
4. Computation of Rank of matrix and Row reduced Echelon form.
5. Computation of Inverse of a Matrix using Cayley-Hamilton theorem.
6. Solving the system of homogeneous and non-homogeneous linear equations.
7. Finding the nth Derivative of $e^{a x}$, trigonometric and hyperbolic functions
8. Finding the nth Derivative of algebraic and logarithmic functions.
9. Finding the nth Derivative of $e^{a x} \sin (b x+c), e^{a x} \cos (b x+c)$.
10. Finding the Taylor's and Maclaurin's expansions of the given functions.
11. Finding the angle between the radius vector and tangent.
12. Finding the curvatures of the given curves.
13. Tracing of standard curves.

General instructions: Suggested Softwares: Maxima/Scilab/Maple/MatLab/Mathematica/Phython/R.

Scheme of Practical Examination (distribution of marks): $\mathbf{2 5}$ marks for Semester end examination

1. Programme writing and problem solving: 10 Marks

2. Programme Execution: 5 Marks
3. Viva: 5 Marks

4. Journal: 5 Marks

Total 25 marks
Note: Same Scheme may be used for IA (Formative Assessment) examination

Books recommended.

1. Scilab by example: M. Affouf 2012, ISBN: 978-1479203444
2. Scilab (A free software to Matlab): H. Ramchandran, A.S.Nair.2011S.Chand and Company
3. Scilab for very beginners. - www.scilab-enterprises.com
4. University Algebra - N.S. Gopala Krishnan, New Age International (P) Limited
5. Theory of Matrices - B S Vatsa, New Age International Publishers.
6. Matrices - A R Vasista, Krishna Prakashana Mandir.
7. Elements of Real Analysis - Shanti Narayan, S. Chand \& Company, New Delhi.
8. Differential Calculus - Shanti Narayan, S. Chand \& Company, New Delhi.
9. Calculus - Lipman Bers, Holt, Rinehart \& Winston.
10. Calculus - S Narayanan \& T. K. Manicavachogam Pillay, S. Viswanathan Pvt. Ltd., vol. I \& II.
11. Schaum's Outline of Calculus - Frank Ayres and Elliott Mendelson, 5th ed. USA: Mc. Graw.

B.Sc. Semester - I

Subject: Mathematics
Open Elective Course (OEC-1)
(OEC for other students)

Course No.	Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative Assessmen tMarks	Total Marks
OEC-1	OEC	Theory	03	03	42 hrs	2 hrs	40	60	100

OEC-1: Title of the Course: Business Mathematics-I

Course Outcome (CO):

After completion of course, students will be able to:
CO 1: Apply sets, relations, functions in business.
CO 2: Use permutations and combinations.
CO 3: Use matrices in commercial field.
CO 4: Apply trigonometric function in real world.

Syllabus- OEC: Title- Business Mathematics-I	Total Hrs: $\mathbf{4 2}$
Unit-I	$\mathbf{1 4}$ hrs
Algebra: Sets, relations, functions, indices, logarithms, permutations and combinations, Examples on commercial mathematics	
Unit-II	$\mathbf{1 4} \mathbf{~ h r s}$
Matrices: Definition of a matrix; types of matrices; Algebra of matrices, Determinants, Properties of determinants; calculations of values of determinants up to third order. Adjoint of a matrix, elementary row and column operations; solution of a system of linear equations involving not more than three variables. Examples on commercial mathematics	
Unit-III	$\mathbf{1 4 ~ h r s ~}$
Trigonometric Functions: Recapitulation of basic Definitions of trigonometric functions. Signs of trigonometric functions and sketch of their graphs. Trigonometric functions of sum and difference of two angles. Trigonometric ratios of multiple angles (Simple problems).	

Books recommended.

1. Allel R.G.A: Basic Mathematics: Macmilan, New Delhi.
2. Dowling, E.T. Mathematics for Economics: Schaum Series, McGraw Hill, London.
3. Soni R.S.: Business Mathematics: Pitamber Publishing House, Delhi
4. N. Rudraiah and Others: College Mathematics for B.Sc Series I and II SBS Publication Co. Bangalore.

B.Sc. Semester - I
 Subject: Mathematics
 SKILL ENHANCEMENT COURSE (SEC)-I

Title of Paper: Scilab

Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours / Semester	Mode of Examina tion	Duration of Exam	Formative Assessment Marks	Summative Assessmen t Marks	Total Marks
SEC-I	Theory + Practical	02	03 hrs	30	Practical	2 hrs	25	25	50

Course Outcome (CO):
After completion of Skill Enhancement course, students will be able to:
CO 1: Understand the Scilab and apply commands in Scilab
CO 2: Use looping in Scilab
CO 3: Build Scilab functions
CO 4: Plot graphs
CO 5: Develop skills to write programme in Scilab

Syllabus- SEC: Title- Scilab	Total Hrs: $\mathbf{3 0}$
Unit-I	$\mathbf{1 5}$ hrs
Introduction to Scilab, The general environment, The editor, Command Window, graphics window, window management and workspace customization, Variables assignments, display array in terms of matrices and vectors, Displaying output data, data file, Scilab functions.	
Unit-II	$\mathbf{1 5 ~ h r s ~}$
Relational and logical operators, Branching Statements and program design, Loops, the while loop, for loop, Tests, 2D and 3D plotting, developing the skills of writing a program Solving differential equations	

Scheme of Practical Examination (distribution of marks): 25 marks for Semester end examination

1. Programme writing and problem solving: 10 Marks
2. Programme Execution: 5 Marks
3. Viva: 5 Marks
4. Journal: 5 Marks

Total 25 marks
Note: Same Scheme may be used for IA(Formative Assessment) examination
Books recommended.

1. Scilab by example: M. Affouf 2012, ISBN: 978-1479203444
2. Scilab (A free software to Matlab): H. Ramchandran, A.S.Nair.2011S.Chand and Company
3. Scilab for very beginners. - www.scilab-enterprises.com

Details of Formative assessment (IA) for DSCC theory/ OEC: 40\% weightage for total marks

Type of Assessment	Weightage	Duration	Commencement
Written test-1	10%	1 hr	$8^{\text {th }}$ Week
Written test-2	10%	1 hr	$12^{\text {th }}$ Week
Seminar	10%	10 minutes	--
Case study / Assignment / Field work / Project work/ Activity	10%	-----	--
Total	40% of the maximum marks allotted for the paper		

Faculty of Science
04 - Year UG Honors programme:2021-22
GENERAL PATTERN OF THEORY QUESTION PAPER FOR DSCC/ OEC (60 marks for semester end Examination with 2 hrs duration)

Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions : 10marks

Part-B

2. Question number 07-11 carries 05Marks each. Answer any 04 questions :20 marks

Part-C

3. Question number 12-15 carries 10 Marks each. Answer any 03 questions : 30 marks
(Minimum 1 question from each unit and 10 marks question may have sub questions for $7+3$ or $6+4$ or $5+5$ if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

B.Sc. Semester - II

Subject: Mathematics Discipline Specific Course (DSC)

The course Mathematics in II semester has two papers (Theory Paper -I for 04 credits \& Practical paper-II for 2 credits) for 06 credits: Both the papers are compulsory. Details of the courses are as under.

Course No. 2 (Theory)

Course No.	Type of Course	Theory/ Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative Assessmen t Marks	Total Marks
Course- $\mathbf{0 2}$	DSCC	Theory	04	04	56 hrs	2 hrs	40	60	100

Course No. 2 (Theory): Title of the Course (Theory): Algebra - II and Calculus - II

Course Outcome (CO):

After completion of course (Theory), students will be able to:
CO 1: Recognize the countable set and groups.
CO 2: Link the fundamental concepts of groups and symmetries of geometrical objects.
CO 3: Explain the significance of the notions of Cosets, normal subgroups and factor groups.
CO 4: Finding the extreme values of functions.
CO 5: Evaluate multiple integration.

Syllabus- Course 2 (Theory): Title- Algebra - II and Calculus - II	Total Hrs: 56
Unit-I	$\mathbf{1 4}$ hrs
Real Number System: Countable and uncountable sets-standard theorems. Real line, Bounded sets, supremum and infimum of a set, completeness properties of R,	
Archimedean property of R. Intervals, neighbourhood of a point, open sets, closed sets, limit points and Bolzano-Weierstrass theorem (without proof).	
Unit-II	$\mathbf{1 4 ~ h r s ~}$
Groups: Definition of a group with examples and properties, congruence, problems. Subgroups, center of groups, definition of order of an element of a group and its related theorems, cyclic groups, Coset decomposition, Factor groups, Lagrange's theorem and its consequences. Fermat's theorem and Euler's ϕ function.	
Unit-III	$\mathbf{1 4 ~ h r s ~}$
Multivariate Calculus: Functions of two or more variables, explicit and implicit functions, Partial derivatives of implicit and composite functions. Homogeneous functions- Euler's theorem and its extension. Total differentials, Jacobians and standard properties and illustrative examples. Taylor's and Maclaurin's series for functions of two variables, Maxima-Minima of functions of two variables. Lagrange's method of undetermined multipliers.	

Unit-IV	$\mathbf{1 4} \mathbf{~ h r s}$
Integral Calculus: Line integral: Definition of line integral and basic properties,	
examples on evaluation of line integrals. Double integral: Definition of Double integrals	
and its conversion to iterated integrals. Evaluation of double integrals by changing the	
order of integration and change of variables. Computation of plane surface areas,	
volume underneath a surface of revolution using double integral. Triple integral:	
Definition of triple integrals and evaluation-change of variables, volume as triple	
integral. Differentiation under the integral sign by Leibnitz rule.	

Books recommended.

1. Topics in Algebra- I N Herstain, Wiley Eastern Ltd., New Delhi.
2. Higher algebra - Bernard \& Child, Arihant, ISBN: 9350943199/9789350943199.
3. Modern Algebra - Sharma and Vasishta, Krishna Prakashan Mandir, Meerut, U.P.
4. Differential Calculus - Shanti Narayan, S. Chand \& Company, New Delhi.
5. Integral Calculus - Shanti Narayan and P K Mittal, S. Chand and Co. Pvt. Ltd.,
6. Schaum's Outline Series - Frank Ayres and Elliott Mendelson, 5th ed. USA: Mc. Graw Hill., 2008.
7. Mathematical Analysis- S C Malik, Wiley Eastern.
8. A Course in Abstract Algebra- Vijay K Khanna and S K Bhambri, Vikas Publications.
9. Text Book of BSc Mathematics-G K Ranganath, S Chand Publications.

B.Sc. Semester - II

Subject: Mathematics
Discipline Specific Course (DSC)
Course No.-2 (Practical)

Course No.	Type of Course	Theory/ Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative Assessmen tMarks	Total Marks
Course- $\mathbf{0 2}$	DSCC	Practic al	02	04	52 hrs	3 hrs	25	25	50

Course No. 2 (Practical): Title of the Course (Practical): Practicals on Algebra -II and Calculus - II Course Outcome (CO):

After completion of course (Practical), students will be able to:
CO 1: Learn Free and Open Source Software (FOSS) tools for computer programming
CO 2: Solve problem on algebra and calculus using FOSS softwares.
CO 3: Acquire knowledge of applications of algebra and calculus through FOSS.

List of the Experiments for 52 hrs / Semesters

1. Program for verification of binary operations.
2. Program to construct Cayley table and test abelian for given finite set.
3. Program to find all possible cosets of the given finite group.
4. Program to find generators and corresponding possible subgroups of a cyclic group.
5. Programs to verification of Lagrange's theorem with suitable examples.
6. Program to verify the Euler's ϕ function for a given finite group.
7. Program to check homogeneous function.
8. Program to verify the Euler's theorem and its extension.
9. Programs to construct series using Maclaurin's expansion for functions of two variables.
10. Program to evaluate the line integrals with constant and variable limits.
11. Program to evaluate the Double integrals with constant and variable limits.
12. Program to evaluate the Triple integrals with constant and variable limits.

General instructions: Suggested Softwares: Maxima/Scilab/Maple/MatLab/Mathematica/Phython/R.

Scheme of Practical Examination (distribution of marks): $\mathbf{2 5}$ marks for Semester end examination

1. Programme writing and problem solving: 10 Marks

2. Programme Execution: 5 Marks
3. Viva: 5 Marks

4. Journal: 5 Marks

Total 25 marks
Note: Same Scheme may be used for IA(Formative Assessment) examination

Books recommended.

1. Scilab by example: M. Affouf 2012, ISBN: 978-1479203444
2. Scilab (A free software to Matlab): H. Ramchandran, A.S.Nair.2011S.Chand and Company
3. Scilab for very beginners. - www.scilab-enterprises.com
4. Topics in Algebra- I N Herstain, Wiley Eastern Ltd., New Delhi.
5. Higher algebra - Bernard \& Child, Arihant, ISBN: 9350943199/9789350943199.
6. Modern Algebra - Sharma and Vasishta, Krishna Prakashan Mandir, Meerut, U.P.
7. Differential Calculus - Shanti Narayan, S. Chand \& Company, New Delhi.
8. Integral Calculus - Shanti Narayan and P K Mittal, S. Chand and Co. Pvt. Ltd.,
9. Schaum's Outline Series - Frank Ayres and Elliott Mendelson, 5th ed. USA: Mc. Graw Hill., 2008.
10. Mathematical Analysis- S C Malik, Wiley Eastern.
11. A Course in Abstract Algebra- Vijay K Khanna and S K Bhambri, Vikas Publications.
12. Text Book of BSc Mathematics-G K Ranganath, S Chand Publications.

B.Sc. Semester - II

Subject: Mathematics
Open Elective Course (OEC-2)
(OEC for other students)

Course No.	Type of Course	Theory / Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessment Marks	Summative Assessmen tMarks	Total Marks
OEC-2	OEC	Theory	03	03	42 hrs	2 hrs	40	60	100

OEC-2: Title of the Course: Business M athematics-II

Course Outcome (CO):

After completion of course, students will be able to:
CO 1: Integrate concept in business concept with functioning of global trade.
CO 2: Understand the commercial arithmetic.
CO 3: Apply decision-support tools to business decision making.
CO 4: Apply knowledge of business concepts and functions in an integrated manner.

Syllabus- OEC: Title- Business Mathematics-II	Total Hrs: $\mathbf{4 2}$
Unit-I	$\mathbf{1 4}$ hrs
Commercial Arithmetic: Interest: Concept of Present value and Future value, Simple interest, Compound interest, Nominal and Effective rate of interest, Examples and Problems Annuity: Ordinary Annuity, Sinking Fund, Annuity due, Present Value and Future Value of Annuity, Equated Monthly Installments (EMI) by Interest of Reducing Balance and Flat Interest methods, Examples and Problems.	
Unit-II	
Measures of central Tendency and Dispersion: Frequency distribution: Raw data, attributes and variables, Classification of data, frequency distribution, cumulative frequency distribution, Histogram and ogive curves. Requisites of ideal measures of central tendency, Arithmetic Mean, Median and Mode for ungrouped and grouped data. Combined mean, Merits and demerits of measures of central tendency. Geometric mean: definition, merits and demerits, Harmonic mean: definition, merits and demerits,	
Choice of A.M., G.M. and H.M. Concept of dispersion, Measures of dispersion: Range, Variance, Standard deviation. (SD) for grouped and ungrouped data, combined SD, Measures of relative dispersion: Coefficient of range, coefficient of variation. Examples and problems.	

Unit-III	$\mathbf{1 4} \mathbf{~ h r s}$
Correlation and regression: Concept and types of correlation, Scatter diagram,	
Interpretation with respect to magnitude and direction of relationship. Karl Pearson's	
coefficient of correlation for ungrouped data. Spearman's rank correlation coefficient.	
(with tie and without tie) Concept of regression, Lines of regression for ungrouped	
data, predictions using lines of regression. Regression coefficients and their properties	
(without proof). Examples and problems.	

Books recommended.

1. Practical Business Mathematics S. A. Bari New Literature Publishing Company New Delhi
2. Mathematics for Commerce K. Selvakumar Notion Press Chennai
3. Business Mathematics with Applications Dinesh Khattar\& S. R. Arora S. Chand Publishing New Delhi
4. Business Mathematics and Statistics N.G. Das \&Dr. J.K. Das McFraw Hill New Delhi
5. Fundamentals of Business Mathematics M. K. Bhowal Asian Books Pvt. Ltd New Delhi
6. Mathematics for Economics and Finance: Methods and Modelling, Martin Anthony and Norman Biggs Cambridge University Press Cambridge
7. Financial Mathematics and Its Applications Ahmad Nazri Wahidudin Ventus Publishing ApS Denmark
8. Fundamentals of Mathematical Statistics Gupta S. C. and Kapoor V. K.: Sultan Chand and Sons 23, Daryaganj, New Delhi 110002
9. Statistical Methods Gupta S. P.: Sultan Chand and Sons 23, Daryaganj, New Delhi 110002
10. Applied Statistics Mukhopadhya Parimal New Central Book Agency Pvt. Ltd. Calcutta.
11. Fundamentals of Statistics Goon A. M., Gupta, M. K. and Dasgupta, B. World Press Calcutta.
12. Fundamentals of Applied Statistics Gupta S. C. and Kapoor V. K.: Sultan Chand and Sons 23, Daryaganj, New Delhi 110002

Details of Formative assessment (IA) for DSCC theory/ OEC: 40\% weightage for total marks

Type of Assessment	Weightage	Duration	Commencement
Written test-1	10%	1 hr	$8^{\text {th }}$ Week
Written test-2	10%	1 hr	$12^{\text {th }}$ Week
Seminar	10%	10 minutes	--
Case study / Assignment / Field work / Project work/ Activity	10%	-----	--
Total	40% of the maximum marks allotted for the paper		

Faculty of Science
04 - Year UG Honors programme:2021-22
GENERAL PATTERN OF THEORY QUESTION PAPER FOR DSCC/ OEC (60 marks for semester end Examination with 2 hrs duration)

Part-A

1. Question number 1-06 carries 2 marks each. Answer any 05 questions $: 10 \mathrm{marks}$

Part-B

2. Question number 07-11 carries 05Marks each. Answer any 04 questions :20 marks

Part-C

3. Question number $12-15$ carries 10 Marks each. Answer any 03 questions : 30 marks
(Minimum 1 question from each unit and 10 marks question may have sub questions for $7+3$ or $6+4$ or $5+5$ if necessary)

Total: 60 Marks

Note: Proportionate weightage shall be given to each unit based on number of hours prescribed.

NAAC Accredited
'A' Grade 2014

Tele: 0836-2215224
e-mail: academic.st@kud.ac.in Pavate Nagar,Dharwad-580003

No. KU/Aca(S\&T)/SSL-394A/2022-23/1056
Date: 23 SEP 2022

అధిసొจజేనె

NEP-2020 మూదరియి ఉశ్శేచుచన్ను అళవณిసిరువ పురిహు.
 ఆదేలర స్ంఖ్కో: ఇడి 260 యుఎనాఇ 2019(భాగ్-1), ది:7.8.2021.

4. మూన్శ పులష్తిగళ ఆదొల్ దినాంళ: 22-09-2022

అడృ: మొలలినంతే

π,

జ్రై

> KarnatakUniversity,Dharwad
> Four Years Under Graduate Program in Mathematics for B.Sc.(Hons.)
> With Effect from2022-23

Sem	TypeofC ourse	Theory/Prac tical	Instructionho urper week	$\begin{array}{\|c\|} \hline \text { Totalhour } \\ \text { sofSyllabus } \\ \text { /Sem } \end{array}$	$\begin{gathered} \text { DurationofE } \\ \text { xam } \end{gathered}$	FormativeAs sessmentMar ks	Summative Assessment Marks	Total Marks	Credits
III	$\begin{array}{r} \text { DSCC: } 5 \\ 033 \text { MAT011 } \end{array}$	Theory	04hrs	56	02hrs	40	60	100	04
	$\begin{gathered} \text { DSCC:6 } \\ 033 \mathrm{MAT012} \end{gathered}$	Practical	04hrs	52	03hrs	25	25	50	02
	$\left\|\begin{array}{c} \text { OEC:3 } \\ 003 \mathrm{MAT} 051 \end{array}\right\|$	Theory	03 hrs	42	02hrs	40	60	100	03
IV	$\begin{gathered} \text { DSCC: } \\ 7034 \mathrm{MAT} 011 \end{gathered}$	Theory	04hrs	56	02hrs	40	60	100	04
	$\begin{aligned} & \text { DSCC: } \\ & 8034 \mathrm{MAT} \\ & 012 \end{aligned}$	Practical	04hrs	52	03hrs	25	25	50	02
	$\left\lvert\, \begin{gathered} \text { OEC-4 } \\ 004 \mathrm{MAT} 051 \end{gathered}\right.$	Theory	03 hrs	42	02hrs	40	60	100	03

IIISemester

DSCC-5(033MAT011) :Ordinary Differential Equations and Real Analysis-I

DSCC-6(033MAT012) : Practicals on Ordinary Differential Equations and Real Analysis-I
OEC-: 3(003MAT051) : Quantitative Mathematics
(for other students)

IV Semester

DSCC-7(034MAT 011) : Partial Differential Equations and Integral Transforms

DSCC-8(034MAT012) : Practicalson Partial Differential Equations and Integral Transforms
OEC- 4(004MAT05) : Mathematical Finance
(for other students)

B.Sc.Semester-III

Subject: Mathematics
Discipline Specific Course(DSC)

The course Mathematics in III semester has two papers (Theory Paper-033MAT011 for 04 credits \& Practical Paper-033MAT012 for 2 credits) for 06 credits: Both the papers are compulsory. Detail soft he courses are as under.

Course No.: 5
Course Code (Theory): 033MAT011

Course Code	Type of Course	Theory/ Practical	Credits	Instruction hour per week	Total No. of Lectures/Hours /Semester	Duration of Exam	Formative Assessmen t Marks	Summative Assessmentt Marks	Total Marks
033MAT011	DSCC	Theory	04	04	56 hrs	2 hrs	40	60	100

Title of the Course (Theory):DSCC-5 :Ordinary Differential Equations and Real Analysis-I(033MAT011)

CourseOutcome(C0):

After completion of the course(Theory), students will be able to:

C01:Solve first-ordernon-lineardifferentialequationsandlineardifferentialequations.
C02:To model problems in nature using Ordinary Differential Equations.
CO3:Formulate differential equations for various mathematical models
CO4: Apply these techniques to solve and analyze various mathematical models.
CO5:Understandthefundamental properties of the real numbers that lead todefine sequenceandseries intheformaldevelopmentofrealanalysis.
CO 6:Learnthe concept ofConvergenceandDivergenceofasequence.
CO 7:Able to handle and understand limits and their use in sequences, series, differentiation, and integration.
CO 8:Apply the ratio, root, alternating series, and limit comparison tests for convergence andabsolute convergenceofaninfiniteseries.

Syllabus-Course(Theory): DSCC-5	TotalHrs:56
Title-033MAT011:OrdinaryDifferentialEquationsandRealAnalysis-I	
Unit-I	14hrs
OrdinaryDifferentialEquations: Recapitulation of Differential Equations of the first order and first degree, Exact Differentialequations, Necessary and sufficientcondition for the equations to be exact, Reducibleto theexact differential equations. Differential equations of the first order and higher degree: Equationssolvable for p, x, y.Clairaut's equation and singular solution.Orthogona trajectories ofCartesianandpolarcurves.	

Unit-II	14hrs
Linear differential equations: Linear differential equations of the $\mathrm{n}^{\text {th }}$ order with constant coefficients. ParticularIntegrals when the RHS is of the form $e^{a x}, \sin (a x+b), \cos (a x+b)$, x^{n}, $e^{a x} V$ and $x V$ (with proofs), where V is a function of x. Cauchy - Euler equations, Legendre differential equations, Methodof variation of parameters.Simultaneous differential equations with two and more than twovariables.Conditionfor integrabilityoftotaldifferentialequationsPdx $+Q d y+R d z=0$.	
Unit-III	14hrs
Sequences: Sequences of real numbers,Bounded sequences. Limit of a sequence.convergent, divergent, and oscillatory sequences.Monotonic sequences. Algebra of convergentsequences. Limit points of a sequence. Bolzano Weierstrass theorem for sequence.Limit superiorand limit inferior of sequences. Cauchy's first and second theorem on limits of a sequence. Cauchy's general principle for convergence of a sequence. Subsequence and their properties.	
Unit-IV	14hrs
Infinite Series:Definition of convergent, divergent, and oscillatoryseries. Series ofnon negativeterms,Cauchy'sgeneralprincipleofconvergence.Geometricseries,P-series(Harmonic series). Comparison tests for positive term series. D'Alembert's ratio test, Raabe'stest.Cauchy'sRoottestandCauchy'sintegraltest.Alternatingseries.Leibnitz'stheorem. Absolute convergence and conditional convergence of a series.Summation of series: Binomial, exponential,andlogarithmic.	

Booksrecommended:

1. M. D. Raisinghania,OrdinaryDifferentialEquations\&PartialDifferential Equations,S.Chand\&Company,NewDelhi.
2. J.SinhaRoyandSPadhy:AcourseofOrdinaryandPartialDifferentialEquation,KalyaniPublishers,NewD elhi.
3. D.Murray,IntroductoryCourseinDifferentialEquations,Orient Longman (India)
4. W. T.Reid,OrdinaryDifferentialEquations,JohnWiley, NewDelhi.
5. M.LKhannaandL.S.Varhiney,RealAnalysis by, JaiPrakashNath\&Co.Meerut.
6. M. L.Khanna,DifferentialEquations,JaiPrakashNath\&Co.Meerut
7. S.L.Ross,DifferentialEquations,3rdEd.,JohnWileyandSons,1984.
8. R.G.BartleandD.R.Sherbert,IntroductiontoRealAnalysis,3rdEd.,JohnWileyandSons(Asia)Pvt.Ltd.,Si ngapore,2015.
9. GeraldG.Bilodeau,PaulR.Thie,G.E.Keough,AnIntroductiontoAnalysis,2ndEd.,Jones\&Bartlett,2010.
10. K.A.Ross,ElementaryAnalysis:TheTheoryofCalculus, (2 ${ }^{\text {nd }}$ edition),Springer, 2013
11. S.K.Berberian,A First CourseinRealAnalysis,SpringerVerlag,NewYork,1994.
12. T.Apostol,MathematicalAnalysis,NarosaPublishingHouse.
13. E. Kreyzig,AdvancedEngineeringMathematics,JohnWiley,NewDelhi.

B.Sc.Semester-III

Subject: MathematicsDisciplineSpecificCourse(DSC)
Course No.: 6
CourseCode (Practical): 033MAT012

Course Code	TypeofCo urse	Theory/Pra ctical	Credits	Instructionho ur perweek	Total No. ofLectures/Hour s $/$ Semester	Duration ofExam	FormativeAss essmentMark s	Summative Assess mentMarks
Total Marks								
033 MAT012	DSCC	Practical	02	04	52 hrs	3 hrs	25	25

TitleoftheCourse(Practical):DSCC-6: PracticalsonOrdinaryDifferentialEquationsandReal Analysis-I (033MAT012)

CourseOutcome(CO):

Aftercompletionofthe course(Practical),studentswillbeableto:
This course will enablethestudents togainhands-onexperienceof
CO 1:Freeand Open Source software (FOSS)tools or computer programming.
CO 2:Solvingexact differentialequations
CO 3: Plotting orthogonaltrajectories
CO 4: Finding complementaryfunctionsandparticularintegraloflinearandhomogeneous differentialequations.
CO 5: Acquireknowledgeofapplicationsofrealanalysisanddifferentialequations.
CO 6:Verificationofconvergence/divergenceofdifferenttypesofseries

ListoftheExperimentsfor52hrs/ Semesters

Introduction to the software and commands related to the topic.

1. Fundamentals ofOrdinarydifferential equationsandRealanalysisusingFOSS.
2. Verificationofexactnessofadifferentialequation
3. PlotorthogonaltrajectoriesforCartesianandpolarcurves
4. Solutionsofdifferentialequationsthataresolvableforx,y,p.
5. TofindthesingularsolutionbyusingClairaut'sform.
6. Finding the Complementary Function and Particular Integral of linear and Homogeneous differential equations with constant coefficients and plot the solutions.
7. Finding the Particular Integral of differential equations upto second order and plot the solutions.
8. Solutions to the Total and Simultaneous differential equations and plot the solutions.
9. Testtheconvergenceofsequences
10. Verification of exponential, logarithm, and binomial series.
11. Verification of geometric series, p-series, Cauchy's Integral test, root test, and D Alembert's Test
12. Examplesonaseriesofpositiveterms.
13. Examplesonalternatingseriesusing Leibnitz'stheorem.
14. FindingtheconvergenceofseriesusingCauchy's criterionforpartialsums.

Pedagogy

Generalinstructions:SuggestedSoftware:Maxima/Scilab/Maple/MatLab/Mathematica/Phython/R.

Schemeof PracticalExamination (distributionof marks):25 marks for Semester end

 examination1. Programmewritingandproblem-solving:10Marks
2. ProgrammeExecution:5Marks
3. Viva:5Marks
4. Journal:5Marks

Total25marks

Note:SameSchememaybeusedforIA(FormativeAssessment)examination

Booksrecommended:

1. Scilabbyexample:M.Affouf2012,ISBN:978-1479203444
2. Scilab(AfreesoftwaretoMatlab):H.Ramchandran,A.S.Nair.2011S.ChandandCompany
3. Scilabforverybeginners.-www.scilab-enterprises.com
4. M. Kanagasabapathy, Introduction to Maxima for Scientific Computers, BPB Publishers.
5. KalyanaraoTakale, Computational Mathematics using Maxima Software, Nirali Publishers.
6. Vaisak Vena, Maxima, The Computer Algebra System, Notion Press.
7. M. D. Raisinghania,OrdinaryDifferentialEquations\&PartialDifferential Equations,S.Chand\&Company,NewDelhi.
8. J.SinhaRoyandSPadhy:AcourseofOrdinaryandPartialDifferentialEquation,KalyaniPublishers,Ne wDelhi.
9. D.Murray,IntroductoryCourseinDifferentialEquations,Orient Longman (India)
10. W. T.Reid,OrdinaryDifferentialEquations,JohnWiley, NewDelhi.
11. M.LKhannaandL.S.Varhiney,RealAnalysis, JaiPrakashNath\&Co.Meerut.
12. M. L.Khanna,DifferentialEquations,JaiPrakashNath\&Co.Meerut.

B.Sc.Semester-III

Subject: Mathematics

OpenElectiveCourse (OEC-3)
(OECforotherstudents)
Course Code(OEC):): 003MAT051

CourseC ode	TypeofC ourse	Theory/ Practical	Credits	Instruction hour perweek	Total No. ofLectures/Ho urs /Semester	Duration ofExam	Formative Assessment Marks	Summative Assessment Marks	Total Marks
003MAT051	OEC	Theory	03	03	42 hrs	2 hrs	40	60	100

OEC-3 (OECforotherstudents): 003MAT051

TitleoftheCourse:Quantitative Mathematics

CourseOutcome(CO):

Aftercompletionofthe course,studentswillbeableto:
C01: Understandnumbersystemandfundamentaloperations
CO2: Understand theconcept oflinearquadraticandsimultaneous equationsand
theirapplicationsinreal-lifeproblems.
C03:Understandandsolvetheproblemsbasedon Age.
CO4:SolveSpeedandDistancerelatedproblems.

Syllabus-003MAT051: Title-Quantitative Mathematics	TotalHrs:42
Unit-I	14hrs
Number System: Numbers, Operations on Numbers, Tests on Divisibility, HCF, and LCM of numbers. Decimal Fractions, Simplification, Square roots, and Cube roots - Problems thereon. Surds and Indices. Illustrations thereon.	
Unit-II	$\mathbf{1 4 h r s}$
Theory of equations Linear equations, quadratic equations, simultaneous equations in two variables, simple application problems - Problems on Ages, Problems on conditional Age calculations, Present \&Past age calculations.	
Unit-III	$\mathbf{1 4 h r s}$
QuantitativeAptitude Percentage, Average, Average Speed-problems.Time and distance, problems based on trains, problems onwork and time, work and wages, clock and calendar.	

Booksrecommended:

1. R.S.Aggarwal,Quantitative Aptitude, S. Chand and Company Limited,New Delhi-110055.
2. AbhijitGuha, Quantitative Aptitude, $5{ }^{\text {th }}$ Edition,Mc.Grawhillpublications. 2014.
3. R. V. Praveen,Quantitative Aptitude and Reasoning,PHIpublishers.
4. R. S. Aggarwal,ObjectiveArithmetic,S.Chand\&CompanyLtd.
5. QaziZameerddin,VijayK. Khanna,S. K. Bhambri,Business Mathematics-II Edition, S. Chand \& Company Ltd.
6. S.K.SharmaandGurmeetKaur, BusinessMathematics,S.Chand\&Sons.
7. HazarikaPadmalochan,ATextBookofBusinessmathematicsforB.Com. andBBACourse, S. Chand \& Company Ltd.
8. J. K. Thukrol,BusinessMathematics,abcibook:2020,FirstEdition, The world book depot, India
9. N. G. Das and J.K.Das, Business Mathematics and Statics, McGraw Hill Education,2017.

DetailsofFormativeassessment(IA)forDSCCtheory/OEC:40 \% weightagefortotalmarks

TypeofAssessment	Weightage	Duration	Commencemen t
Writtentest-1	10%	1 hr	$8^{\text {th }}$ Week
Writtentest-2	10%	1 hr	$12^{\text {th }}$ Week
Seminar	10%	10 minutes	--
Casestudy/Assignment / Fieldwork/ Projectwork/Activity	10%	-----	--
Total	40% ofthemaximumm arksallottedforthe paper		

FacultyofScience

04-YearUGHonorsprogramme:2022-23

GENERALPATTERNOFTHEORYQUESTIONPAPERFORDSCC/OEC

(60marksforsemesterendExaminationwith2hrsduration)

Part-A

1. Questionnumber1-6carries2markseach.Answerany5questions

Part-B

2. Questionnumber7-11carries5 markseach.Answerany4questions
:20marks

Part-C

3. Questionnumber12-15carries10 markseach.Answerany3questions
mum1questionfromeachunitand 10marksquestionmayhavesub questionsfor7+3or6+4or5+5ifnecessary)

Total:60Marks

Format for Model question paper Unit wise

033MAT011:OrdinaryDifferentialEquationsandRealAnalysis-I

Question Number	Number of questions to be set in Unit	Number of questions to be answered	Marks for each question	Max marks for the question
1	Unit-I -------2 Unit-II ------1 Unit-III-----1 Unit-IV----2 Total: 6	5	2	10
2	Unit-I ------1 Unit-II------1 Unit-III-----1 Unit-IV----1 Total: 5	4	5	20
3	Unit-I -------1 Unit-II-----1 Unit-III------1 Unit-IV----1 Total: 4	3	10	30

003MAT051 Quantitative Mathematics

Question Number	Number of questions to be set in Unit	Number of questions to be answered	Marks for each question	Max marks for the question
1	Unit-I ------2 Unit-II ------2 Unit-II-----2 Total: 6	5	2	10
2	Unit-I ------1 Unit-II-----2 Unit-III----2 Total: 5	4	5	20
3	Unit-I -----2 Unit-II-----1 Unit-III-----1 Total: 4	3	10	30

B.Sc.Semester-IV

> Subject:
> MathematicsDisciplineSpecificCour se(DSCC)

ThecourseMathematicsinIVsemesterhastwopapers(TheoryPaperfor04credits\&Practicalpaperfor 2 credits)for06credits:Bothpapersarecompulsory.Detailsofthecoursesareasunder.

Course No.: 7
CourseCode(Theory): 034MAT011

CourseCode	TypeofCo urse	Theory/ Practical	Credits	Instructionho ur perweek	Total No. ofLectures/Hour s /Semester	Duration ofExam	FormativeA ssessmentM arks	Summative Assessmentt Marks	Total Marks
034MAT011	DSCC	Theory	04	04	56 hrs	2 hrs	40	60	100

TitleoftheCourse(Theory)::DSCC-7:Partial Differential Equations and Integral Transforms(034MAT011)

CourseOutcome(CO):

Aftercompletionofthe course(Theory),studentswillbeableto:
CO1: Solve the Partial Differential Equations of the first order and second order.
CO2: Formulate, classify and transform partial differential equations into canonical form.
CO3: Solve linear and non-linear partial differential equations using various methods; and apply these methods to solving some physical problems.
CO4: Able to take more courses on wave equation, heat equation, and Laplace equation.
CO5: Solve PDE by Laplace Transforms and Fourier Transforms.

Syllabus-(Theory): DSCC-7 Title-034MAT011: Partial DifferentialEquations and Integral Transforms	TotalHrs:56
Unit-I	$\mathbf{1 4 h r s}$
Basic concepts-Formation of partial differential equations by elimination of arbitrary constants and functions, Solution of partial differential equations -Solution by Direct integration, Lagrange's linear equations of the form Pp + Qq = R, Standard types of first order non-linear partial differential equations. The integrals of the non-linear equation by Charpit's method	
Unit-II	$\mathbf{1 4 h r s}$
Homogeneous linear partial differential equations with constant coefficients. Partial differential equations of the second order. Classification of second-order partial differential equations, canonical forms. Classification of second-order linear equations as hyperbolic, parabolic, and elliptic. Solutions of the Heat equation, Laplace equation, and Wave equation (usingseparationofvariables).	
Unit-III	$\mathbf{1 4 h r s}$

Laplace Transforms Definition, Basic Properties. Laplace transforms of some standard functions. Laplace transform of Periodic functions. Laplace transform of derivative and integral of a function. Heaviside function. Dirac-delta function. Convolution theorem. InverseLaplace transforms and its properties. Solution of differential equations by using Laplacetransforms
Unit-IV
14hrs
Fourier Series and Transforms: Periodic functions. Fourier Coefficients. Fourierseries of functions with period 2π and period 2 L . Fourier series of even and odd functions. Halfrange Cosine and Sine series. Fourier Transforms - Finite Fourier Cosine and Sine transform.Transformsofderivates.ApplicationsofFourierTransforms.

Booksrecommended:

1. D. A. Murray, Introductory Coursein Differential Equations, Orientand Longman
2. H.T.H.Piaggio, Elementary Treatiseon Differential Equations and their Applications,CBS Publisher \& Distributors, Delhi,1985.
3. G.F.Simmons, Differential Equations, TataMcGraw Hill.
4. S.L.Ross, Differential Equations, $3^{\text {rd }}$ Ed.,JohnWiley and Sons,India,2004.
5. M. D. Raisinghania, Ordinary Differential Equations \& Partial Differential Equations, S.Chand\& Company, New Delhi.
6. K. SankaraRao, Introductionto Partial Differential Equations, PHI,Third Edition, 2015.
7. I.N.Sneddean, Elements of Partial differential equations, McGraw-Hill International Editions, 1986.
8. Murray R. Spiegal(Schaum'sSeries), LaplaceTransforms, McGraw-Hill International Editions.
9. Goel and Gupta, LaplaceTransform, PragatiPrakashan, Meerut, India.
10. Sudhir KumarPundir, Integral Transform Methods in Science \& Engineering, CBS Engineering Series, 2017, New Delhi.
11. Murray R.Spiegal(Schaum'sSeries), Fourier Transforms,McGraw-Hill International Editions.
12. Earl David Rainville and Philip Edward Bedient-A short course in Differential Equations,Prentice Hall College Div; $6^{\text {th }}$ Edition.
13. SathyaPrakash, Mathematical Physics, S. ChandandSons, New Delhi.

B.Sc.Semester-IV

Subject:
MathematicsDisciplineSpecificCours
e(DSCC)
Course No.: 8
CourseCode (Practical): 034MAT012

CourseCode	TypeofC ourse	Theory/Prac tical	Credits	Instructionho ur perweek	Total No. ofLectures/Hour s /Semester	Durationo fExam	Formative Assessme ntMarks	Summative Assessment Marks
034 MAT012	DSCC	Practical	02	04	52 hrs	3 hrs	25	25

TitleoftheCourse(Practical)DSCC-8:PracticalsonPartial Differential Equations and Integral
Transforms(034MAT012)
CourseOutcome(CO):
Aftercompletionofthe course(Practical),studentswillbeableto:
C01:Learn Free and Open Source software(FOSS) tools or computer programming.
CO2: Solve problemson Partial Differential Equations and Integral Forms.
CO3:To find Laplace transformof various functions.
CO 4:To find the Fourier Transform of periodic functions
CO 5:To solve partial differential equations by using Integral transforms.

ListoftheExperimentsfor52hrs/ Semesters

1 Solutions of Linear Partial differential equationsof type1 to type4 and Lagrange's method.
2 Solutions of the partial differential equation using Charpit's method.
3 Solutions of Second-order homogenous partial differential equation with constant coefficients.
4 Solutions to thepartial differential equations using the separation of variables method (Heat/ Wave/ Laplace).
5 Finding the Laplace transforms of some standard and periodic functions.
6 Finding the inverse Laplace transform of simple functions
7 Verification of Convolution Theorem.
8 To solve ordinary linear differential equations using Laplace transforms.
9 To solve the Integral equation using Laplace transform.
10 To find full range Fourier series ofsome simple functions with period 2π and 2L
11 To find Half range sine and cosine series of some simple functions and ploting them.
12 To find Cosine Fourier transforms.
13 To find Sine Fouriertransforms.
Generalinstructions:SuggestedSoftwares:Maxima/Scilab/Maple/MatLab/Mathematica/Phython/R.

Schemeof PracticalExamination (distributionof marks):25 marks for Semester endexamination

1. Programmewritingandproblemsolving:10Marks

2. ProgrammeExecution:5Marks

3. Viva:5Marks

4. Journal:5Marks

Total25marks

Note:SameSchememaybeusedforIA(FormativeAssessment)examination

Booksrecommended.

1. Scilabbyexample:M.Affouf2012,ISBN:978-1479203444.
2. Scilab(AfreesoftwaretoMatlab):H.Ramchandran,A.S.Nair.2011S.ChandandCompany.
3. Scilabforverybeginners.-www.scilab-enterprises.com
4. M. Kanagasabapathy, Introduction to Maxima for Scientific Computers, BPB Publishers.
5. KalyanaraoTakale, Computational Mathematics using Maxima Software, Nirali Publishers.
6. Vaisak Vena, Maxima, The Computer Algebra System, Notion Press.
7. P.N.de Souza. R.J. Fateman, J.Moses and C. Yapp, The Maxima Book.
8. M. D. Raisinghania, Ordinary Differential Equations \& Partial Differential Equations, S.Chand \& Company, New Delhi.
9. I.N.Sneddean, Elements of Partial differential equations, McGraw-Hill International Editions, 1986.
10. Murray R.Spiegal(Schaum'sSeries), LaplaceTransforms, McGraw-Hill International Editions.
11. Murray R.Spiegal(Schaum'sSeries), Fourier Transforms, McGraw-Hill International Editions.

B.Sc.Semester -IV

Subject:

MathematicsOpenElectiveCourse(OEC
-4)
(OECforotherstudents)

Course Code(OEC): 004MAT051

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|}\hline \text { CourseCode } & \begin{array}{c}\text { TypeofCou } \\ \text { rse }\end{array} & \begin{array}{c}\text { Theory/ } \\ \text { Practical }\end{array} & \text { Credits } & \begin{array}{c}\text { Instructionho } \\ \text { ur perweek }\end{array} & \begin{array}{c}\text { Total No. } \\ \text { ofLectures/Hour } \\ \text { s } \\ \text { /Semester }\end{array} & \begin{array}{c}\text { Duration } \\ \text { ofExam }\end{array} & \begin{array}{c}\text { FormativeA } \\ \text { ssessmentM } \\ \text { arks }\end{array} & \begin{array}{c}\text { Summative } \\ \text { Assessment } \\ \text { Marks }\end{array} \\ \text { 004MAT051 } & \text { OEC } & \text { Theory } & 03 & 03 & 42 \mathrm{hrs} & 2 \mathrm{hrs} & 40 & 60 \\ \text { Marks }\end{array}\right\}$

OEC-4(forotherstudents): 004MAT051:

TitleoftheCourse:Mathematical Finance

CourseOutcome(CO):

Aftercompletionofthe course,studentswillbeableto:
CO1:Understandhowto computeprofitandloss,discount,andB anker'sdiscount.
CO2: Understand the concept of Linear equations and inequalities and their use in the Solvingthe Linear Programming Problems.
CO3: Formulation of Transportation Problem and its application in the routing problem Integratethe conceptinbusinessconceptwiththe functioningofglobaltrade.
CO4: Understandcommercialarithmetic.
CO5: Applydecision-supporttoolstobusinessdecision-making.
CO6:Applyknowledgeofbusinessconceptsandfunctionsinanintegratedmanner.

Syllabus-OEC Title-004MAT051: Mathematical Finance	TotalHrs:42
Unit-I	14hrs
Commercial Arithmetic Bill of exchange, Bill of the discounting procedure.Basic formula related to profit, loss, discount and brokerage, Successive discount,True discount, Banker's discount.	
Unit-II	14hrs
LinearProgramming Linear equations and inequalities- Rectangular coordinates, straight line, parallel and intersecting lines, and linear inequalities. Introduction to linear programming, Mathematical formulation of LPP, Solution of an LPP by graphical method, special cases in the graphical method.	

Unit-III	14hrs
Transportationproblem	
Introduction, Formulation of Transportation problem, Initial basic feasible solution,	
Steps in solving a transportation problem, optimality check, special cases in	
Transportation problem. The Traveling salesman Problem (RoutingProblem).	

Booksrecommended:

1. R. S. Aggarwal, Objective Arithmetic, S.Chand\& Company Ltd.
2. A. Mizrahi and M. Sullivan, Mathematics for Business and Social Sciences and Application approach, JohnWiley and Sons, India.
3. QaziZameeruddin, Vijay K. Khanna, S. K. Bhambri, Business Mathematics- II Edition, Vikas Publishing House.
4. S.Kalavathy,OperationResearch, Fourth edition,Vikas publication house Pvt. Ltd.
5. Sreenivasa Reddy M, Operations Research, $2^{\text {nd }}$ edition, Sanguine Technical publishers Bangalore.
6. S.D.Sharma, OperationResearch,KedarNath Ram Nath, Meerut.

DetailsofFormativeassessment(IA)forDSCCtheory/OEC:40 \% weightagefortotalmarks

TypeofAssessment	Weightage	Duration	Commencemen t
Writtentest-1	10%	1 hr	$8^{\text {th }}$ Week
Writtentest-2	10%	1 hr	$12^{\text {th }}$ Week
Seminar	10%	10 minutes	--
Casestudy/Assignment/Field work/Projectwork/Activity	10%	-----	--
Total	40% ofthemaximummarks allottedforthepaper		

FacultyofScience
04-YearUGHonorsprogramme:2022-23

GENERALPATTERNOFTHEORYQUESTIONPAPERFORDSCC/OEC

(60marksforsemesterendExaminationwith2hrsduration)

Part-A

1. Questionnumber1-6carries2markseach.Answerany5questions

Part-B

2. Questionnumber7-11carries5Markseach.Answerany4questions

Part-C

3. Questionnumber12-15carries10Markseach.Answerany3questions

Minimum1questionfromeachunitand10marksquestionmayhavesub questionsfor7+3or6+4or5+5ifnecessary)

Total:60Marks

Format for Model question paper Unit wise
DSCCTheory: 034MAT011: Partial Differential Equations and Integral Transforms

Question Numbers	Number of questions to be set in Unit	Number of questions to be answered	Marks for each question	Max marks for the question
1	Unit-I: ------- 2 Unit-II -------1 Unit: III------2 Unit: IV---- Total: 6	5	2	10
2	Unit-I ------1 Unit-II -----1 Unit-III ------1 Unit-IV ----1 Total: 5	4	5	20
3	Unit-I -------1 Unit-II ------1 Unit-III------1 Unit-IV----1 Total: 4	3	10	30

OEC4:004MAT051: Mathematical Finance

Question Number	Number of questions to be set in Unit	Number of questions to be answered	Marks for each question	Max marks for the question
1	Unit-I ------2 Unit-II -----2 Unit-III-----2 Total: 6	5	2	10
2	Unit-I ------2 Unit-II -----1 Unit-III-----2 Total :5	4	5	20
3	Unit-I -----1 Unit-II ------2 Unit-III----1 Total: 4	3	10	30

$\rightarrow 3$

